Formation and evolution of a pair of collisionless shocks in counter-streaming flows
نویسندگان
چکیده
A pair of collisionless shocks that propagate in the opposite directions are firstly observed in the interactions of laser-produced counter-streaming flows. The flows are generated by irradiating a pair of opposing copper foils with eight laser beams at the Shenguang-II (SG-II) laser facility. The experimental results indicate that the excited shocks are collisionless and electrostatic, in good agreement with the theoretical model of electrostatic shock. The particle-in-cell (PIC) simulations verify that a strong electrostatic field growing from the interaction region contributes to the shocks formation. The evolution is driven by the thermal pressure gradient between the upstream and the downstream. Theoretical analysis indicates that the strength of the shocks is enhanced with the decreasing density ratio during both flows interpenetration. The positive feedback can offset the shock decay process. This is probable the main reason why the electrostatic shocks can keep stable for a longer time in our experiment.
منابع مشابه
Studying near-relativistic collisionless shocks with high-intensity laser- plasma interactions
Collisionless shocks are pervasive in space and astrophysical plasmas and are known to be efficient particle accelerators; however, the microphysics underlying shock formation and particle acceleration is not yet fully understood. The fast progress in laser technology is bringing the study of near-relativistic collisionless shocks into the realm of laboratory plasmas. We use multi-dimensional p...
متن کاملFilamentation instability of counterstreaming laser-driven plasmas.
Filamentation due to the growth of a Weibel-type instability was observed in the interaction of a pair of counterstreaming, ablatively driven plasma flows, in a supersonic, collisionless regime relevant to astrophysical collisionless shocks. The flows were created by irradiating a pair of opposing plastic (CH) foils with 1.8 kJ, 2-ns laser pulses on the OMEGA EP Laser System. Ultrafast laser-dr...
متن کاملGeneration and Evolution of High-Mach-Number Laser-Driven Magnetized Collisionless Shocks in the Laboratory.
We present the first laboratory generation of high-Mach-number magnetized collisionless shocks created through the interaction of an expanding laser-driven plasma with a magnetized ambient plasma. Time-resolved, two-dimensional imaging of plasma density and magnetic fields shows the formation and evolution of a supercritical shock propagating at magnetosonic Mach number M_{ms}≈12. Particle-in-c...
متن کاملOn the Structure of Relativistic Collisionless Shocks in Electron-ion Plasmas
Relativistic collisionless shocks in electron-ion plasma are thought to occur in the afterglow phase of Gamma-Ray Bursts (GRBs), and in other environments where relativistic flows interact with the interstellar medium. A particular regime of shocks in an unmagnetized plasma has generated much interest for GRB applications. In this paper we present ab-initio particle-in-cell simulations of unmag...
متن کاملCosmological shock waves
Large-scale structure formation, accretion and merging processes, AGN activity produce cosmological gas shocks. The shocks convert a fraction of the energy of gravitationally accelerated flows to internal energy of the gas. Being the main gas-heating agent, cosmological shocks could amplify magnetic fields and accelerate energetic particles via the multi-fluid plasma relaxation processes. We fi...
متن کامل